MindIE-ICU
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
测试文档
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
npu-smi info 相关报错- dcmi module initialize failed_MindIE_昇腾论坛
鲲鹏服务器,300I-Duo(310P3)npu卡,部署Qwen3-32B,容器内启动 ./mindieservice_daemon报权限错误_MindIE_昇腾论坛
今天刚到的算力服务器:300I-Duo(310P3)npu卡, 容器内启动 ./mindieservice_daemon,日志是什么意思?_MindIE_昇腾论坛
deepseekR1模型的性能需要怎么优化_MindIE_昇腾论坛
真没招了搞了一天了解决不了,求助求助大佬来!!!EZ9999: [PID: 28402] 2025-08-24-16:31:00.300.443 Parse dynamic kernel config fail. Trace_MindIE_昇腾论坛
求Atlas 800 Mindie部署Qwen2.5VL32B的教程_MindIE_昇腾论坛
大模型部署_MindIE_昇腾论坛
MindIE 2.1RC1部署qwen2.5-vl-7B-Instruct并发推理20张以上图片报错_MindIE_昇腾论坛
import mindiesd,报错:libPTAExtensionOPS.so: undefined symbol_MindIE_昇腾论坛
单卡310P3使用镜像跑deepsee 7B报出Warning: EZ9999: Inner Error! EZ9999: [PID: 1338] _MindIE_昇腾论坛
310P3显卡跑Qwen2.5-7b-vl报错,参考https://www.hiascend.com/developer/ascendhub/detail/9eedc82e0c0644b2a2a9d0821ed5e7ad_MindIE_昇腾论坛
mindieservice_daemon 启动报错, NPU out of memory (PyTorch)_MindIE_昇腾论坛
Qwen3-Reranker-4B重排序模型能够正常启动,访问重排序模型接口时报错,NPU out of memory,请问该如何解决_MindIE_昇腾论坛
Qwen3-Reranker-4B重排序模型能够正常启动,访问重排序模型接口时报错,NPU out of memory,请问该如何解决_MindIE_昇腾论坛
vit-b-16镜像服务启动成功之后的调用命令例子不对_MindIE_昇腾论坛
跑2张310P卡,使用mindie镜像,npu-smi info显示的设备不是0,1_MindIE_昇腾论坛
2.1.RC1-300I-Duo-py311-openeuler24.03-lts镜像无法下载_MindIE_昇腾论坛
模型答非所问_MindIE_昇腾论坛
mindIE 设置system prompt以及和ollama的一些参数对应问题_MindIE_昇腾论坛
Atlas 300i Duo上部署qwen3-32b后启动失败_MindIE_昇腾论坛
Atlas 300i Duo上部署qwen3-32b后启动失败_MindIE_昇腾论坛
拉起mindIE服务(mindieservice_daemon)出错_MindIE_昇腾论坛
MindIE推理DeepSeek R1 0528 BF16乱码_MindIE_昇腾论坛
Atlas 500 A2 智能小站 ffmpeg硬件编解码报错_MindIE_昇腾论坛
MindIE镜像无法安装vllm依赖_MindIE_昇腾论坛
在使用mis_tei:7.1.RC1-300I-Duo-aarch64镜像时报错,illegal_MindIE_昇腾论坛
银河麒麟V10 SP1运行mindie报错_MindIE_昇腾论坛
qwen2.5-vl图片处理报错_MindIE_昇腾论坛
mindie部署模型后,并发多的情况下请求报错_MindIE_昇腾论坛
在2块Atlas 300i pro 上,开启mindie-service服务,跑Qwen3-8b,速度较慢 ,请问有加速方案吗? _MindIE_昇腾论坛
部署mindie docker时,应该选用什么操作系统,麒麟还是欧拉?_MindIE_昇腾论坛
mindieserver提供的大模型服务化接口如何配置API key_MindIE_昇腾论坛
Ascend310P1的OrangePi AI Studio使用mindIE镜像报错ImportError: /usr/local/Ascend/nnal/atb/latest/atb/cxx_abi_0/lib/libatb.so: un_MindIE_昇腾论坛
Embedding、Rerank部署报错_MindIE_昇腾论坛
Tokenizer encode wait sub process timeout. errno is 110_MindIE_昇腾论坛
310p运行vllm-ascend报[ERROR] 2025-08-12-01:31:20 (PID:909, Device:-1, RankID:-1) ERR99999 UNKNOWN applicaiton exception_MindIE_昇腾论坛
MindIE 2.1.rc1启动Qwen3-30B-A3B报错_MindIE_昇腾论坛
mindie推理qwen2.5-vl报错_MindIE_昇腾论坛
https安装证书失败_MindIE_昇腾论坛
S500C+300IPRO 部署gpustack ,适应mindeie 部署qwen 2.5 7B instruct 启动不了_MindIE_昇腾论坛
求助,300i duo卡使用msmodelslim中的w8a8量化,用mindie部署报错_MindIE_昇腾论坛
【MindIE】【接口疑问】服务管控指标查询接口如果有多个模型时,指标值是多个模型汇总的结果吗_MindIE_昇腾论坛
最新镜像2.1.RC1-300I-Duo-py311-openeuler24.03-lts 部署Qwen2.5-VL-7B,文本问答正常,推理图像报错_MindIE_昇腾论坛
MindIE 2.1.RC1版本中,支持Qwen3-32B 在300IDUO下的稀疏量化问题_MindIE_昇腾论坛
部署qwen3-32b模型tool_call功能异常,急急急_MindIE_昇腾论坛
MindIE MS Coordinate使用多模态的方式访问报[ERROR] [RequestListener.cpp:482] : [MIE03E200C00] [RequestListener] Failed to deal MindI_MindIE_昇腾论坛
mindie2.1启动qwen3:32b报错llminferengine failed to init llminfermodels_MindIE_昇腾论坛
export MIES_SERVICE_MONITOR_MODE=1设置需重启服务中断业务才能生效,有规避的方法吗?_MindIE_昇腾论坛
2.1.RC1-300I-Duo-py311-openeuler24.03-lts在300iDUO卡部署Qwen3-30B-A3B模型报错_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
deepseekR1模型的性能需要怎么优化_MindIE_昇腾论坛
真没招了搞了一天了解决不了,求助求助大佬来!!!EZ9999: [PID: 28402] 2025-08-24-16:31:00.300.443 Parse dynamic kernel config fail. Trace_MindIE_昇腾论坛
真没招了搞了一天了解决不了,求助求助大佬来!!!EZ9999: [PID: 28402] 2025-08-24-16:31:00.300.443 Parse dynamic kernel config fail. Trace_MindIE_昇腾论坛
真没招了搞了一天了解决不了,求助求助大佬来!!!EZ9999: [PID: 28402] 2025-08-24-16:31:00.300.443 Parse dynamic kernel config fail. Trace_MindIE_昇腾论坛
真没招了搞了一天了解决不了,求助求助大佬来!!!EZ9999: [PID: 28402] 2025-08-24-16:31:00.300.443 Parse dynamic kernel config fail. Trace_MindIE_昇腾论坛
310P3显卡跑Qwen2.5-7b-vl报错,参考https://www.hiascend.com/developer/ascendhub/detail/9eedc82e0c0644b2a2a9d0821ed5e7ad_MindIE_昇腾论坛
mindieservice_daemon 启动报错, NPU out of memory (PyTorch)_MindIE_昇腾论坛
Qwen3-Reranker-4B重排序模型能够正常启动,访问重排序模型接口时报错,NPU out of memory,请问该如何解决_MindIE_昇腾论坛
2.1.RC1-300I-Duo-py311-openeuler24.03-lts镜像无法下载_MindIE_昇腾论坛
Atlas 300i Duo上部署qwen3-32b后启动失败_MindIE_昇腾论坛
Atlas 500 A2 智能小站 ffmpeg硬件编解码报错_MindIE_昇腾论坛
最新镜像2.1.RC1-300I-Duo-py311-openeuler24.03-lts 部署Qwen2.5-VL-7B,文本问答正常,推理图像报错_MindIE_昇腾论坛
部署qwen3-32b模型tool_call功能异常,急急急_MindIE_昇腾论坛
MindIE 启动卡死,日志停滞在 model_runner.dtype,NPU 进程存在但模型未加载_MindIE_昇腾论坛
求助谁用最新的mindie2.1rc1在300i-duo的卡下面跑通qwen3的moe模型了?_MindIE_昇腾论坛
请求快速支持 gpt-oss-120b 和 gpt-oss-20b 模型_MindIE_昇腾论坛
MindIE 支持 msmodelslim 量化后的模型嘛_MindIE_昇腾论坛
有偿求助帮忙在autodl上部署MindIE Server_MindIE_昇腾论坛
MindIE如何一卡推理两个语言模型?_MindIE_昇腾论坛
w cassin baixar_MindIE_昇腾论坛
适配微调后的MiniCPM-V-2_6,总是出现错误:Failed to get vocab size from tokenizer wrapper with exception_MindIE_昇腾论坛
求助,现在mindie哪个版本支持部署qwen2.5-vl-72B,有没有部署指导文档,谢谢。_MindIE_昇腾论坛
最新版的2.1.RC1-800I-A2-py311-openeuler24.03-lts 部署Qwen3-235B-A22B (2台Atlas 800I A2 推理)目前推理速度10 token/s_MindIE_昇腾论坛
Atlas 300I Duo8卡运行DeepSeek-R1-Distill-Llama-70B异常_MindIE_昇腾论坛
《急贴求大神回答!!!》800TA2宿主机部署Deepseek-R1、Qwen3-235B、Qwen3-32B推理服务报错!!!!_MindIE_昇腾论坛
qwen2.5VL 72B模型部署后无法确保结果可复现_MindIE_昇腾论坛
VLM 模型是否支持w8a16 量化_MindIE_昇腾论坛
910B 8卡 部署Qwen3-32B模型,模型启动报ConnectionRefusedError: [Errno 111] Connection refused错误_MindIE_昇腾论坛
910B 8卡 部署Qwen3-32B模型,模型启动报ConnectionRefusedError: [Errno 111] Connection refused错误_MindIE_昇腾论坛
910B 8卡 部署Qwen3-32B模型,模型启动报ConnectionRefusedError: [Errno 111] Connection refused错误_MindIE_昇腾论坛
之前昇腾产品公告中提到7月份会升级mindie到2.1rc1版本,什么时候能试用啊?_MindIE_昇腾论坛
MindIE 部署JanusPro7B 识别返回乱码 _MindIE_昇腾论坛
MindIE双机部署Qwen3-235B-A22B-Instruct-2507模型报错:Failed to get vocab size from tokenizer wrapper with exception_MindIE_昇腾论坛
mindie2.0.RC2版本运行GLM-4.1V-9B-Thinking报错是不支持吗_MindIE_昇腾论坛
多模型部署报错了_MindIE_昇腾论坛
atlas300 卡,mindie 或者 gpustack 启动本地 llm , 怎么对 本地部署的 ragflow 等 RAG 应用进行测评呢?_MindIE_昇腾论坛
dev-2.0.T17.B010-800I-A2-py311-ubuntu22.04-aarch64 部署Qwen3-Coder 失败_MindIE_昇腾论坛
310P3 运行Qwen3/Deepseek-R1的性能_MindIE_昇腾论坛
求助DeepSeek-R1-Distill-Llama-70B-W8A8-NPU谁有这个能下载的模型啊,两张300iDUO还有模型的优化配置_MindIE_昇腾论坛
mindie:2.0.RC2-300I-Duo-py311-openeuler24.03-lts请问如何去升级旧的变量_MindIE_昇腾论坛
镜像文件中使用 ./bin/mindieservice_daemon报错:_MindIE_昇腾论坛
qwen2.5-72b-instruct运行中频繁卡顿:ai core 利用率总是莫名达到100%,然后模型推理卡住,持续约6-7分钟后释放_MindIE_昇腾论坛
大EP场景下运行,D节点夯住,提升Slave waiting for master init flag_MindIE_昇腾论坛
四机部署DeepSeek-R1-0528-bf16问题与解决方案_MindIE_昇腾论坛
DeepSeek-V3-w8a8双机直连部署启MindIE服务化报错_MindIE_昇腾论坛
登录镜像仓库报错_MindIE_昇腾论坛
使用64G双机800I A2部署int8量化的deepseekR1最长上下文是多少?config.json的参数应该如何配置?_MindIE_昇腾论坛
部署qwen2.5vl-32b时,报错 Exception:call aclnnArange failed, detail:EZ9999: Inner Error!_MindIE_昇腾论坛
双机32卡910B (MindIE 2.0 rc2) 部署DeepSeek-R1-w8a8,性能优化遇到瓶颈(32卡吞吐仅780 tok/s vs 单机16卡680 tok/s),求tpdp,moetpdp参数设置建议_MindIE_昇腾论坛
MindIE 运行DeepSeek-R1-Distill-Qwen-32B 无法启动_MindIE_昇腾论坛
MindIE 运行DeepSeek-R1-Distill-Qwen-32B 无法启动_MindIE_昇腾论坛
MindIE 运行DeepSeek-R1-Distill-Qwen-32B 无法启动_MindIE_昇腾论坛
300iduo,一张310P3 96G的卡,mindie可以跑qwen2.5vl吗?_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
求Atlas 800 Mindie部署Qwen2.5VL32B的教程_MindIE_昇腾论坛
310P3显卡跑Qwen2.5-7b-vl报错,参考https://www.hiascend.com/developer/ascendhub/detail/9eedc82e0c0644b2a2a9d0821ed5e7ad_MindIE_昇腾论坛
2.1.RC1-300I-Duo-py311-openeuler24.03-lts镜像无法下载_MindIE_昇腾论坛
MindIE镜像无法安装vllm依赖_MindIE_昇腾论坛
MindIE镜像无法安装vllm依赖_MindIE_昇腾论坛
MindIE 2.1.rc1启动Qwen3-30B-A3B报错_MindIE_昇腾论坛
MindIE 2.1.rc1启动Qwen3-30B-A3B报错_MindIE_昇腾论坛
mindie推理qwen2.5-vl报错_MindIE_昇腾论坛
mindie推理qwen2.5-vl报错_MindIE_昇腾论坛
mindie推理qwen2.5-vl报错_MindIE_昇腾论坛
MindIE 2.1.RC1版本中,支持Qwen3-32B 在300IDUO下的稀疏量化问题_MindIE_昇腾论坛
MindIE如何一卡推理两个语言模型?_MindIE_昇腾论坛
最新版的2.1.RC1-800I-A2-py311-openeuler24.03-lts 部署Qwen3-235B-A22B (2台Atlas 800I A2 推理)目前推理速度10 token/s_MindIE_昇腾论坛
最新版的2.1.RC1-800I-A2-py311-openeuler24.03-lts 部署Qwen3-235B-A22B (2台Atlas 800I A2 推理)目前推理速度10 token/s_MindIE_昇腾论坛
910B 8卡 部署Qwen3-32B模型,模型启动报ConnectionRefusedError: [Errno 111] Connection refused错误_MindIE_昇腾论坛
镜像文件中使用 ./bin/mindieservice_daemon报错:_MindIE_昇腾论坛
使用64G双机800I A2部署int8量化的deepseekR1最长上下文是多少?config.json的参数应该如何配置?_MindIE_昇腾论坛
使用64G双机800I A2部署int8量化的deepseekR1最长上下文是多少?config.json的参数应该如何配置?_MindIE_昇腾论坛
MindIE 运行DeepSeek-R1-Distill-Qwen-32B 无法启动_MindIE_昇腾论坛
MindIE多机多卡推理,是否支持使用部分卡,而不是整机8张卡都使用_MindIE_昇腾论坛
MindIE部署Qwen2-audio模型怎么调用?_MindIE_昇腾论坛
MindIE-Service 部署的推理服务是不是不能上传附件比如pdf_MindIE_昇腾论坛
在Atlas 300I Duo 96GB卡上如何部署SGLang,没有找到相关的文档_MindIE_昇腾论坛
MindIE是否支持bge-reranker-V2-m3模型_MindIE_昇腾论坛
《急帖求回》宿主机怎么部署Qwen3系列模型_MindIE_昇腾论坛
mindie2.0用2卡910B推理Qwen2.5-VL-3B正常,而切换为单卡推理报错_MindIE_昇腾论坛
能否增加下 m3e-large 的emb镜像呢_MindIE_昇腾论坛
910B3支持的量化类型_MindIE_昇腾论坛
910B2求助_MindIE_昇腾论坛
Qwen2.5-VL-72B-Instruct模型分析图片报错{"error":"Failed to get engine response.","error_type":"Incomplete Generation"}_MindIE_昇腾论坛
咨询关于mindIE支持模型的几个问题_MindIE_昇腾论坛
mindie下载申请能不能快一些通过啊!_MindIE_昇腾论坛
910A用MindIE部署Qwen2.5-VL-7B-Instruct报错_MindIE_昇腾论坛
910A用MindIE部署Qwen2.5-VL-7B-Instruct报错_MindIE_昇腾论坛
基于MindIE2.0.RC2在300I Duo上单卡运行qwen2.5-vl-7b报错_MindIE_昇腾论坛
300iDUO适配MiniCPM-V-2_6微调后大模型失败_MindIE_昇腾论坛
300iDUO适配MiniCPM-V-2_6微调后大模型失败_MindIE_昇腾论坛
bge-large-zh-v1.5模型部署后调用,出现 Bad Request Error, 413 Client Error_MindIE_昇腾论坛
bge-large-zh-v1.5模型部署后调用,出现 Bad Request Error, 413 Client Error_MindIE_昇腾论坛
bge-large-zh-v1.5模型部署后调用,出现 Bad Request Error, 413 Client Error_MindIE_昇腾论坛
2.0.RC2-300I-Duo-py311-openeuler24.03-lts镜像是否支持qwen3_MindIE_昇腾论坛
atb-llm面壁大模型权重转换报错ValueError: safe_get_model_from_pretrained failed._MindIE_昇腾论坛
MiniCPM-V2.6-8Bmindie部署指导如何获取?_MindIE_昇腾论坛
MiniCPM-V2.6-8Bmindie部署指导如何获取?_MindIE_昇腾论坛
大模型推理时常受限_MindIE_昇腾论坛
使用qwen2.5-vl-7b-instruct镜像跑qwen2.5-vl-7b-instruct模型对话测试报错_MindIE_昇腾论坛
使用qwen2.5-vl-7b-instruct镜像跑qwen2.5-vl-7b-instruct模型对话测试报错_MindIE_昇腾论坛
使用mis-tei驱动rerenk模型时存在的问题_MindIE_昇腾论坛
MindIE啥时候能支持GLM-4.1V-9B-Thinking模型呀,有具体计划吗?_MindIE_昇腾论坛
大家两张300I duo 跑DeepSeek-R1-Distill-Qwen-32B 的速度怎么样?_MindIE_昇腾论坛
大家两张300I duo 跑DeepSeek-R1-Distill-Qwen-32B 的速度怎么样?_MindIE_昇腾论坛
请教MindIE2.0RC2运行Qwen32-14B模型的参数_MindIE_昇腾论坛
Qwen3-14B的镜像改如何下载啊 _MindIE_昇腾论坛
mis-tei:7.1.T3-800I-A2-aarch64部署错误情况_MindIE_昇腾论坛
mindie运行qwen2.5-72B失败_MindIE_昇腾论坛
申请的mindie下载权限,请管理员尽快批准_MindIE_昇腾论坛
为什么PD分离部署场景下,指定openai格式接口内的 top_k,top_p,seed, temperature,beam等参数,全都不生效_MindIE_昇腾论坛
单卡Atlas 300I DUO 使用mindie 启动qwen2-7B报错_MindIE_昇腾论坛
Atlas 300-I-duo 96g的显卡支持什么ai大模型_MindIE_昇腾论坛
mindie2.0RC2 运行Qwen2.5-VL-32B-Instruct模型失败_MindIE_昇腾论坛
VLLM+ray 搭建分布式推理运行 Qwen3_235B,VLLM 跨节点寻找 npuID 逻辑错误_MindIE_昇腾论坛
适配Qwen2.5-Omni-7B的镜像包无法下载_MindIE_昇腾论坛
【MindIE】【DeepSeek】性能较差、推理较慢问题定位总结(持续更新~)_MindIE_昇腾论坛
310P3显卡跑Qwen2.5-7b-vl报错,参考https://www.hiascend.com/developer/ascendhub/detail/9eedc82e0c0644b2a2a9d0821ed5e7ad_MindIE_昇腾论坛
Atlas 300i Duo上部署qwen3-32b后启动失败_MindIE_昇腾论坛
2.1.RC1-300I-Duo-py311-openeuler24.03-lts在300iDUO卡部署Qwen3-30B-A3B模型报错_MindIE_昇腾论坛
2.1.RC1-300I-Duo-py311-openeuler24.03-lts在300iDUO卡部署Qwen3-30B-A3B模型报错_MindIE_昇腾论坛
2.1.RC1-300I-Duo-py311-openeuler24.03-lts在300iDUO卡部署Qwen3-30B-A3B模型报错_MindIE_昇腾论坛
MindIE 启动卡死,日志停滞在 model_runner.dtype,NPU 进程存在但模型未加载_MindIE_昇腾论坛
求助谁用最新的mindie2.1rc1在300i-duo的卡下面跑通qwen3的moe模型了?_MindIE_昇腾论坛
有偿求助帮忙在autodl上部署MindIE Server_MindIE_昇腾论坛
Atlas 300I Duo8卡运行DeepSeek-R1-Distill-Llama-70B异常_MindIE_昇腾论坛
之前昇腾产品公告中提到7月份会升级mindie到2.1rc1版本,什么时候能试用啊?_MindIE_昇腾论坛
多模型部署报错了__昇腾论坛
qwen2.5-72b-instruct运行中频繁卡顿:ai core 利用率总是莫名达到100%,然后模型推理卡住,持续约6-7分钟后释放_MindIE_昇腾论坛
qwen2.5-72b-instruct运行中频繁卡顿:ai core 利用率总是莫名达到100%,然后模型推理卡住,持续约6-7分钟后释放_MindIE_昇腾论坛
大EP场景下运行,D节点夯住,提升Slave waiting for master init flag_MindIE_昇腾论坛
MindIE 运行DeepSeek-R1-Distill-Qwen-32B 无法启动__昇腾论坛
《急帖求回》宿主机怎么部署Qwen3系列模型_MindIE_昇腾论坛
mindie2.0用2卡910B推理Qwen2.5-VL-3B正常,而切换为单卡推理报错_MindIE_昇腾论坛
Qwen2.5-VL-72B-Instruct模型分析图片报错{"error":"Failed to get engine response.","error_type":"Incomplete Generation"}_MindIE_昇腾论坛
基于MindIE2.0.RC2在300I Duo上单卡运行qwen2.5-vl-7b报错__昇腾论坛
300iDUO适配MiniCPM-V-2_6微调后大模型失败_MindIE_昇腾论坛
300iDUO适配MiniCPM-V-2_6微调后大模型失败_MindIE_昇腾论坛
bge-large-zh-v1.5模型部署后调用,出现 Bad Request Error, 413 Client Error_MindIE_昇腾论坛
atb-llm面壁大模型权重转换报错ValueError: safe_get_model_from_pretrained failed._MindIE_昇腾论坛
MiniCPM-V2.6-8Bmindie部署指导如何获取?_MindIE_昇腾论坛
大模型推理时常受限_MindIE_昇腾论坛
大模型推理时常受限_MindIE_昇腾论坛
大模型推理时常受限_MindIE_昇腾论坛
大家两张300I duo 跑DeepSeek-R1-Distill-Qwen-32B 的速度怎么样?_MindIE_昇腾论坛
Qwen3-14B的镜像改如何下载啊 _MindIE_昇腾论坛
Qwen3-14B的镜像改如何下载啊 _MindIE_昇腾论坛
单卡Atlas 300I DUO 使用mindie 启动qwen2-7B报错_MindIE_昇腾论坛
单卡Atlas 300I DUO 使用mindie 启动qwen2-7B报错_MindIE_昇腾论坛
单卡Atlas 300I DUO 使用mindie 启动qwen2-7B报错_MindIE_昇腾论坛
Atlas 300-I-duo 96g的显卡支持什么ai大模型_MindIE_昇腾论坛
mindie2.0RC2 运行Qwen2.5-VL-32B-Instruct模型失败_MindIE_昇腾论坛
适配Qwen2.5-Omni-7B的镜像包无法下载_MindIE_昇腾论坛
适配Qwen2.5-Omni-7B的镜像包无法下载_MindIE_昇腾论坛
裸机CPU高性能开启执行" cpupower -c all frequency-set -g performance"失败_MindIE_昇腾论坛
MindIE 启动 DeepSeek-R1-0528-Qwen3-8B 报错_MindIE_昇腾论坛
Qwen3-32B进行w4a4量化时报错copy_d2d:build/CMakeFiles/torch_npu.dir/compiler_depend.ts:285 NPU function error: c10_npu::acl::Acl_MindIE_昇腾论坛
Qwen3-32B进行w4a4量化时报错copy_d2d:build/CMakeFiles/torch_npu.dir/compiler_depend.ts:285 NPU function error: c10_npu::acl::Acl_MindIE_昇腾论坛
300I DUO 部署 Qwen2-VL-7B-Instruct 报错_MindIE_昇腾论坛
MindIE是否有计划增加结构化输出能力, 比如集成xgrammar库?_MindIE_昇腾论坛
【已解决】mindie加载 qwen2.5-14B-instruct-w8a8 报错AttributeError: 'ForkAwareLocal' object has no attribute 'connection‘_MindIE_昇腾论坛
有什么好用的ocr识别pdf文档,可以部署到910b服务器_MindIE_昇腾论坛
2.0.RC1-800I-A2-py311-openeuler24.03-lts 部署DeepSeekV3-BF16 在多并发下如何保持首响在1s内_MindIE_昇腾论坛
300I DUO推理速度极慢1token/s,是配置问题还是显卡性能问题?_MindIE_昇腾论坛
300I DUO推理速度极慢1token/s,是配置问题还是显卡性能问题?_MindIE_昇腾论坛
300I DUO推理速度极慢1token/s,是配置问题还是显卡性能问题?_MindIE_昇腾论坛
300I DUO推理速度极慢1token/s,是配置问题还是显卡性能问题?_MindIE_昇腾论坛
300I DUO推理速度极慢1token/s,是配置问题还是显卡性能问题?_MindIE_昇腾论坛
MindIE 文本/流式推理接口 是否支持上下文请求,如果支持如何使用_MindIE_昇腾论坛
thxcode/mindie:2.0.RC1-800I-A2-py311-openeuler24.03-lts 服务部署deepseekv3_fp16乱码_MindIE_昇腾论坛
model-config中'asyncBatchscheduler': 'false', 'async_infer': 'false', 'distributed_enable': 'false'_MindIE_昇腾论坛
2.0.RC1 mindie 910b4 创建rerank 和embedding失败_MindIE_昇腾论坛
300I Duo卡能用MindIE 部署DeepSeek 32B吗【最新MIndIE模型支撑列表里显示不支持】_MindIE_昇腾论坛
300I Duo卡能用MindIE 部署DeepSeek 32B吗【最新MIndIE模型支撑列表里显示不支持】_MindIE_昇腾论坛
启动dsv3报错_MindIE_昇腾论坛
mindie容器部署,宿主机环境问题_MindIE_昇腾论坛
mindie容器部署,宿主机环境问题_MindIE_昇腾论坛
mindie容器部署,宿主机环境问题_MindIE_昇腾论坛
mindie容器部署,宿主机环境问题_MindIE_昇腾论坛
mindie容器部署,宿主机环境问题__昇腾论坛
求个最新的mindie_2.0 用于部署qwen3和qwen2.5_vl_MindIE_昇腾论坛
求个最新的mindie_2.0 用于部署qwen3和qwen2.5_vl_MindIE_昇腾论坛
(mindieservice)There appear to be 30 leaked semaphore objects to clean up at shutdown warnings.warn('resource_tracke_MindIE_昇腾论坛
mindie启动服务失败_MindIE_昇腾论坛
MindIE中执行命令报错:OpenBLAS blas_thread_init: pthread_create failed for thread 1 of 64: Operation not permitted_MindIE_昇腾论坛
(mindieservice)get platform info failed, drvErr=87. _MindIE_昇腾论坛
mindie 2.0 版本 部署qwen 2.5vl 72B,并发数为40时 出现如下错误Segmentation fault (core dumped),导致服务直接挂死_MindIE_昇腾论坛
HunyuanVideo视频生成部署问题,爆显存_MindIE_昇腾论坛
300iduo里运行docker版模型报错_MindIE_昇腾论坛
本地部署和Qwen3 32B求助_MindIE_昇腾论坛
本地部署和Qwen3 32B求助_MindIE_昇腾论坛
本地部署和Qwen3 32B求助_MindIE_昇腾论坛
910b4部署deekseep失败_MindIE_昇腾论坛
910b4部署deekseep失败_MindIE_昇腾论坛
mis-tei 是否支持 Qwen3-Embedding 及 Qwen3-Reranker_MindIE_昇腾论坛
mis-tei 启动后一直输出 waiting for python backend to be ready_MindIE_昇腾论坛
Qwen3-32B的mindie:2.0.T17镜像还能下载吗_MindIE_昇腾论坛
ascend-device-pulgin-branch_v6.0.0.0-RC3 K8s部署大模型报错_MindIE_昇腾论坛
双机直连跑deepseekINT8量化模型,不报错但日志卡住_MindIE_昇腾论坛
(DMA) hardware execution error_MindIE_昇腾论坛
MindIe2.0RC1 容器化部署时必需使用24.0.0 及以上版本吗,20.0.0.0 能否进行部署?_MindIE_昇腾论坛
Ascend 310啥时候可以兼容Qwen3-14B呀?_MindIE_昇腾论坛
使用openai 接口 在多模态任务下 历史多轮数据格式问题_MindIE_昇腾论坛
MindIE Server使用https报错_MindIE_昇腾论坛
-
+
首页
mindie 2.0 版本 部署qwen 2.5vl 72B,并发数为40时 出现如下错误Segmentation fault (core dumped),导致服务直接挂死_MindIE_昇腾论坛
# mindie 2.0 版本 部署qwen 2.5vl 72B,并发数为40时 出现如下错误Segmentation fault (core dumped),导致服务直接挂死_MindIE_昇腾论坛 ## 概述 本文档基于昇腾社区论坛帖子生成的技术教程。 **原始链接**: https://www.hiascend.com/forum/thread-0267186315092089043-1-1.html **生成时间**: 2025-08-27 10:34:00 --- ## 问题描述 SystemInfo 硬件 910BC3 mindie 2.0.RC2 config.json { "Version": "1.0.0", "ServerConfig": { "ipAddress": "172.17.0.10", "managementIpAddress": "127.0.0.2", "port": 8000, "managementPort": 1026, "metricsPort": 1027, "allowAllZeroIpListening": false, "maxLinkNum": 1000, "httpsEnabled": false, "fullTextEnabled": false, "tlsCaPath": "security/ca/", "tlsCaFile": [ "ca.pem" ], "tlsCert": "security/certs/server.pem", "tlsPk": "security/keys/server.key.pem", "tlsPkPwd": "security/pass/key_pwd.txt", "tlsCrlPath": "security/certs/", "tlsCrlFiles": [ "server_crl.pem" ], "managementTlsCaFile": [ "management_ca.pem" ], "managementTlsCert": "security/certs/management/server.pem", "managementTlsPk": "security/keys/management/server.key.pem", "managementTlsPkPwd": "security/pass/management/key_pwd.txt", "managementTlsCrlPath": "security/management/certs/", "managementTlsCrlFiles": [ "server_crl.pem" ], "kmcKsfMaster": "tools/pmt/master/ksfa", "kmcKsfStandby": "tools/pmt/standby/ksfb", "inferMode": "standa... ## 相关代码 ### 代码示例 1 ``` { "Version": "1.0.0", "ServerConfig": { "ipAddress": "172.17.0.10", "managementIpAddress": "127.0.0.2", "port": 8000, "managementPort": 1026, "metricsPort": 1027, "allowAllZeroIpListening": false, "maxLinkNum": 1000, "httpsEnabled": false, "fullTextEnabled": false, "tlsCaPath": "security/ca/", "tlsCaFile": [ "ca.pem" ], "tlsCert": "security/certs/server.pem", "tlsPk": "security/keys/server.key.pem", "tlsPkPwd": "security/pass/key_pwd.txt", "tlsCrlPath": "security/certs/", "tlsCrlFiles": [ "server_crl.pem" ], "managementTlsCaFile": [ "management_ca.pem" ], "managementTlsCert": "security/certs/management/server.pem", "managementTlsPk": "security/keys/management/server.key.pem", "managementTlsPkPwd": "security/pass/management/key_pwd.txt", "managementTlsCrlPath": "security/management/certs/", "managementTlsCrlFiles": [ "server_crl.pem" ], "kmcKsfMaster": "tools/pmt/master/ksfa", "kmcKsfStandby": "tools/pmt/standby/ksfb", "inferMode": "standard", "interCommTLSEnabled": true, "interCommPort": 1121, "interCommTlsCaPath": "security/grpc/ca/", "interCommTlsCaFiles": [ "ca.pem" ], "interCommTlsCert": "security/grpc/certs/server.pem", "interCommPk": "security/grpc/keys/server.key.pem", "interCommPkPwd": "security/grpc/pass/key_pwd.txt", "interCommTlsCrlPath": "security/grpc/certs/", "interCommTlsCrlFiles": [ "server_crl.pem" ], "openAiSupport": "vllm", "tokenTimeout": 600, "e2eTimeout": 600, "distDPServerEnabled": false }, "BackendConfig": { "backendName": "mindieservice_llm_engine", "modelInstanceNumber": 1, "npuDeviceIds": [ [ 0, 1, 2, 3 ] ], "tokenizerProcessNumber": 8, "multiNodesInferEnabled": false, "multiNodesInferPort": 1120, "interNodeTLSEnabled": true, "interNodeTlsCaPath": "security/grpc/ca/", "interNodeTlsCaFiles": [ "ca.pem" ], "interNodeTlsCert": "security/grpc/certs/server.pem", "interNodeTlsPk": "security/grpc/keys/server.key.pem", "interNodeTlsPkPwd": "security/grpc/pass/mindie_server_key_pwd.txt", "interNodeTlsCrlPath": "security/grpc/certs/", "interNodeTlsCrlFiles": [ "server_crl.pem" ], "interNodeKmcKsfMaster": "tools/pmt/master/ksfa", "interNodeKmcKsfStandby": "tools/pmt/standby/ksfb", "ModelDeployConfig": { "maxSeqLen": 26000, "maxInputTokenLen": 20000, "truncation": false, "ModelConfig": [ { "modelInstanceType": "Standard", "modelName": "qwen2_5_vl_72B", "modelWeightPath": "/invoker-deploy/Qwen_local_57_b1275e8d/in/Qwen2___5-VL-72B-Instruct", "worldSize": 4, "cpuMemSize": 5, "npuMemSize": -1, "backendType": "atb", "trustRemoteCode": false } ] }, "ScheduleConfig": { "templateType": "Standard", "templateName": "Standard_LLM", "cacheBlockSize": 128, "maxPrefillBatchSize": 50, "maxPrefillTokens": 30000, "prefillTimeMsPerReq": 150, "prefillPolicyType": 0, "decodeTimeMsPerReq": 50, "decodePolicyType": 0, "maxBatchSize": 200, "maxIterTimes": 6000, "maxPreemptCount": 0, "supportSelectBatch": false, "maxQueueDelayMicroseconds": 5000 } } } 复制 ``` ### 代码示例 2 ``` { "Version": "1.0.0", "ServerConfig": { "ipAddress": "172.17.0.10", "managementIpAddress": "127.0.0.2", "port": 8000, "managementPort": 1026, "metricsPort": 1027, "allowAllZeroIpListening": false, "maxLinkNum": 1000, "httpsEnabled": false, "fullTextEnabled": false, "tlsCaPath": "security/ca/", "tlsCaFile": [ "ca.pem" ], "tlsCert": "security/certs/server.pem", "tlsPk": "security/keys/server.key.pem", "tlsPkPwd": "security/pass/key_pwd.txt", "tlsCrlPath": "security/certs/", "tlsCrlFiles": [ "server_crl.pem" ], "managementTlsCaFile": [ "management_ca.pem" ], "managementTlsCert": "security/certs/management/server.pem", "managementTlsPk": "security/keys/management/server.key.pem", "managementTlsPkPwd": "security/pass/management/key_pwd.txt", "managementTlsCrlPath": "security/management/certs/", "managementTlsCrlFiles": [ "server_crl.pem" ], "kmcKsfMaster": "tools/pmt/master/ksfa", "kmcKsfStandby": "tools/pmt/standby/ksfb", "inferMode": "standard", "interCommTLSEnabled": true, "interCommPort": 1121, "interCommTlsCaPath": "security/grpc/ca/", "interCommTlsCaFiles": [ "ca.pem" ], "interCommTlsCert": "security/grpc/certs/server.pem", "interCommPk": "security/grpc/keys/server.key.pem", "interCommPkPwd": "security/grpc/pass/key_pwd.txt", "interCommTlsCrlPath": "security/grpc/certs/", "interCommTlsCrlFiles": [ "server_crl.pem" ], "openAiSupport": "vllm", "tokenTimeout": 600, "e2eTimeout": 600, "distDPServerEnabled": false }, "BackendConfig": { "backendName": "mindieservice_llm_engine", "modelInstanceNumber": 1, "npuDeviceIds": [ [ 0, 1, 2, 3 ] ], "tokenizerProcessNumber": 8, "multiNodesInferEnabled": false, "multiNodesInferPort": 1120, "interNodeTLSEnabled": true, "interNodeTlsCaPath": "security/grpc/ca/", "interNodeTlsCaFiles": [ "ca.pem" ], "interNodeTlsCert": "security/grpc/certs/server.pem", "interNodeTlsPk": "security/grpc/keys/server.key.pem", "interNodeTlsPkPwd": "security/grpc/pass/mindie_server_key_pwd.txt", "interNodeTlsCrlPath": "security/grpc/certs/", "interNodeTlsCrlFiles": [ "server_crl.pem" ], "interNodeKmcKsfMaster": "tools/pmt/master/ksfa", "interNodeKmcKsfStandby": "tools/pmt/standby/ksfb", "ModelDeployConfig": { "maxSeqLen": 26000, "maxInputTokenLen": 20000, "truncation": false, "ModelConfig": [ { "modelInstanceType": "Standard", "modelName": "qwen2_5_vl_72B", "modelWeightPath": "/invoker-deploy/Qwen_local_57_b1275e8d/in/Qwen2___5-VL-72B-Instruct", "worldSize": 4, "cpuMemSize": 5, "npuMemSize": -1, "backendType": "atb", "trustRemoteCode": false } ] }, "ScheduleConfig": { "templateType": "Standard", "templateName": "Standard_LLM", "cacheBlockSize": 128, "maxPrefillBatchSize": 50, "maxPrefillTokens": 30000, "prefillTimeMsPerReq": 150, "prefillPolicyType": 0, "decodeTimeMsPerReq": 50, "decodePolicyType": 0, "maxBatchSize": 200, "maxIterTimes": 6000, "maxPreemptCount": 0, "supportSelectBatch": false, "maxQueueDelayMicroseconds": 5000 } } } ``` ### 代码示例 3 ``` ============ Serving Benchmark Result ============ Successful requests: 20 Benchmark duration (s): 55.80 Total input tokens: 89051 Total generated tokens: 2741 Request throughput (req/s): 0.36 Output token throughput (tok/s): 49.12 Total Token throughput (tok/s): 1645.07 ---------------Time to First Token---------------- Mean TTFT (ms): 33009.60 Median TTFT (ms): 33009.08 P99 TTFT (ms): 33034.09 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 136.80 Median TPOT (ms): 137.92 P99 TPOT (ms): 138.75 ---------------Inter-token Latency---------------- Mean ITL (ms): 135.52 Median ITL (ms): 138.23 P99 ITL (ms): 145.32 ---------------------Accuracy--------------------- Accuracy Rate (%): 65.00 ================================================== root@5fd5f429c6cb:/home/project# ^C root@5fd5f429c6cb:/home/project# cd /home/project ; /usr/bin/env /usr/local/bin/python /root/.vscode-server/extensions/ms-python.debugpy-2025.8.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher 60067 -- /home/project/learning_project/benchmarks/benchmark_serving.py --backend openai-chat --model Qwen/Qwen2_5-VL-72B-Instruct --endpoint /v1/chat/completions --dataset-name phonetest --dataset-path /home/project/dataset/phonetest/web_nj_action_0426_grpo.json --num-prompts 30 --served_model_name qwen2_5_vl_72B --save_result --host 10.20.42.105 --tokenizer /home/temp/llm_tokenizer/Qwen/Qwen2_5-VL-72B-Instruct --port 32781 INFO 06-26 08:59:02 [__init__.py:244] Automatically detected platform cuda. Namespace(backend='openai-chat', base_url=None, host='10.20.42.105', port=32781, endpoint='/v1/chat/completions', dataset_name='phonetest', dataset_path='/home/project/dataset/phonetest/web_nj_action_0426_grpo.json', max_concurrency=None, model='Qwen/Qwen2_5-VL-72B-Instruct', tokenizer='/home/temp/llm_tokenizer/Qwen/Qwen2_5-VL-72B-Instruct', use_beam_search=False, num_prompts=30, logprobs=None, request_rate=inf, burstiness=1.0, seed=0, trust_remote_code=False, ascend=False, disable_tqdm=False, profile=False, save_result=True, save_detailed=False, append_result=False, metadata=None, result_dir=None, result_filename=None, ignore_eos=False, percentile_metrics='ttft,tpot,itl,accuracy_rate', metric_percentiles='99', goodput=None, custom_output_len=256, custom_skip_chat_template=False, phonetest_output_len=1024, sonnet_input_len=550, sonnet_output_len=150, sonnet_prefix_len=200, sharegpt_output_len=None, random_input_len=1024, random_output_len=128, random_range_ratio=0.0, random_prefix_len=0, hf_subset=None, hf_split=None, hf_output_len=None, top_p=None, top_k=None, min_p=None, temperature=None, tokenizer_mode='auto', served_model_name='qwen2_5_vl_72B', lora_modules=None) Starting initial single prompt test run... Initial test run completed. Starting main benchmark run... Traffic request rate: inf Burstiness factor: 1.0 (Poisson process) Maximum request concurrency: None 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [01:25<00:00, 2.86s/it] ============ Serving Benchmark Result ============ Successful requests: 30 Benchmark duration (s): 85.87 Total input tokens: 133938 Total generated tokens: 4137 Request throughput (req/s): 0.35 Output token throughput (tok/s): 48.18 Total Token throughput (tok/s): 1607.91 ---------------Time to First Token---------------- Mean TTFT (ms): 41686.26 Median TTFT (ms): 33241.36 P99 TTFT (ms): 66323.77 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 199.20 Median TPOT (ms): 206.81 P99 TPOT (ms): 250.82 ---------------Inter-token Latency---------------- Mean ITL (ms): 200.35 Median ITL (ms): 137.54 P99 ITL (ms): 1651.45 ---------------------Accuracy--------------------- Accuracy Rate (%): 66.67 ================================================== ============ Serving Benchmark Result ============ Successful requests: 1 Benchmark duration (s): 62.06 Total input tokens: 4187 Total generated tokens: 102 Request throughput (req/s): 0.02 Output token throughput (tok/s): 1.64 Total Token throughput (tok/s): 69.11 ---------------Time to First Token---------------- Mean TTFT (ms): 34565.55 Median TTFT (ms): 34565.55 P99 TTFT (ms): 34565.55 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 143.41 Median TPOT (ms): 143.41 P99 TPOT (ms): 143.41 ---------------Inter-token Latency---------------- Mean ITL (ms): 142.01 Median ITL (ms): 131.28 P99 ITL (ms): 163.19 ---------------------Accuracy--------------------- Accuracy Rate (%): 100.00 ================================================== 复制 ``` ### 代码示例 4 ``` ============ Serving Benchmark Result ============ Successful requests: 20 Benchmark duration (s): 55.80 Total input tokens: 89051 Total generated tokens: 2741 Request throughput (req/s): 0.36 Output token throughput (tok/s): 49.12 Total Token throughput (tok/s): 1645.07 ---------------Time to First Token---------------- Mean TTFT (ms): 33009.60 Median TTFT (ms): 33009.08 P99 TTFT (ms): 33034.09 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 136.80 Median TPOT (ms): 137.92 P99 TPOT (ms): 138.75 ---------------Inter-token Latency---------------- Mean ITL (ms): 135.52 Median ITL (ms): 138.23 P99 ITL (ms): 145.32 ---------------------Accuracy--------------------- Accuracy Rate (%): 65.00 ================================================== root@5fd5f429c6cb:/home/project# ^C root@5fd5f429c6cb:/home/project# cd /home/project ; /usr/bin/env /usr/local/bin/python /root/.vscode-server/extensions/ms-python.debugpy-2025.8.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher 60067 -- /home/project/learning_project/benchmarks/benchmark_serving.py --backend openai-chat --model Qwen/Qwen2_5-VL-72B-Instruct --endpoint /v1/chat/completions --dataset-name phonetest --dataset-path /home/project/dataset/phonetest/web_nj_action_0426_grpo.json --num-prompts 30 --served_model_name qwen2_5_vl_72B --save_result --host 10.20.42.105 --tokenizer /home/temp/llm_tokenizer/Qwen/Qwen2_5-VL-72B-Instruct --port 32781 INFO 06-26 08:59:02 [__init__.py:244] Automatically detected platform cuda. Namespace(backend='openai-chat', base_url=None, host='10.20.42.105', port=32781, endpoint='/v1/chat/completions', dataset_name='phonetest', dataset_path='/home/project/dataset/phonetest/web_nj_action_0426_grpo.json', max_concurrency=None, model='Qwen/Qwen2_5-VL-72B-Instruct', tokenizer='/home/temp/llm_tokenizer/Qwen/Qwen2_5-VL-72B-Instruct', use_beam_search=False, num_prompts=30, logprobs=None, request_rate=inf, burstiness=1.0, seed=0, trust_remote_code=False, ascend=False, disable_tqdm=False, profile=False, save_result=True, save_detailed=False, append_result=False, metadata=None, result_dir=None, result_filename=None, ignore_eos=False, percentile_metrics='ttft,tpot,itl,accuracy_rate', metric_percentiles='99', goodput=None, custom_output_len=256, custom_skip_chat_template=False, phonetest_output_len=1024, sonnet_input_len=550, sonnet_output_len=150, sonnet_prefix_len=200, sharegpt_output_len=None, random_input_len=1024, random_output_len=128, random_range_ratio=0.0, random_prefix_len=0, hf_subset=None, hf_split=None, hf_output_len=None, top_p=None, top_k=None, min_p=None, temperature=None, tokenizer_mode='auto', served_model_name='qwen2_5_vl_72B', lora_modules=None) Starting initial single prompt test run... Initial test run completed. Starting main benchmark run... Traffic request rate: inf Burstiness factor: 1.0 (Poisson process) Maximum request concurrency: None 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30/30 [01:25<00:00, 2.86s/it] ============ Serving Benchmark Result ============ Successful requests: 30 Benchmark duration (s): 85.87 Total input tokens: 133938 Total generated tokens: 4137 Request throughput (req/s): 0.35 Output token throughput (tok/s): 48.18 Total Token throughput (tok/s): 1607.91 ---------------Time to First Token---------------- Mean TTFT (ms): 41686.26 Median TTFT (ms): 33241.36 P99 TTFT (ms): 66323.77 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 199.20 Median TPOT (ms): 206.81 P99 TPOT (ms): 250.82 ---------------Inter-token Latency---------------- Mean ITL (ms): 200.35 Median ITL (ms): 137.54 P99 ITL (ms): 1651.45 ---------------------Accuracy--------------------- Accuracy Rate (%): 66.67 ================================================== ============ Serving Benchmark Result ============ Successful requests: 1 Benchmark duration (s): 62.06 Total input tokens: 4187 Total generated tokens: 102 Request throughput (req/s): 0.02 Output token throughput (tok/s): 1.64 Total Token throughput (tok/s): 69.11 ---------------Time to First Token---------------- Mean TTFT (ms): 34565.55 Median TTFT (ms): 34565.55 P99 TTFT (ms): 34565.55 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 143.41 Median TPOT (ms): 143.41 P99 TPOT (ms): 143.41 ---------------Inter-token Latency---------------- Mean ITL (ms): 142.01 Median ITL (ms): 131.28 P99 ITL (ms): 163.19 ---------------------Accuracy--------------------- Accuracy Rate (%): 100.00 ================================================== ``` ### 代码示例 5 ``` Traceback (most recent call last): File "/home/project/learning_project/benchmarks/benchmark_serving.py", line 1311, in <module> main(args) File "/home/project/learning_project/benchmarks/benchmark_serving.py", line 840, in main benchmark_result = asyncio.run( File "/usr/local/lib/python3.10/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/usr/local/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete return future.result() File "/home/project/learning_project/benchmarks/benchmark_serving.py", line 329, in benchmark raise ValueError( ValueError: Initial test run failed - Please make sure benchmark arguments are correctly specified. Error: Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1115, in _wrap_create_connection sock = await aiohappyeyeballs.start_connection( File "/usr/local/lib/python3.10/site-packages/aiohappyeyeballs/impl.py", line 122, in start_connection raise first_exception File "/usr/local/lib/python3.10/site-packages/aiohappyeyeballs/impl.py", line 73, in start_connection sock = await _connect_sock( File "/usr/local/lib/python3.10/site-packages/aiohappyeyeballs/impl.py", line 208, in _connect_sock await loop.sock_connect(sock, address) File "/usr/local/lib/python3.10/asyncio/selector_events.py", line 501, in sock_connect return await fut File "/usr/local/lib/python3.10/asyncio/selector_events.py", line 541, in _sock_connect_cb raise OSError(err, f'Connect call failed {address}') ConnectionRefusedError: [Errno 111] Connect call failed ('10.20.42.105', 32781) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/project/learning_project/benchmarks/backend_request_func.py", line 406, in async_request_openai_chat_completions async with session.post( File "/usr/local/lib/python3.10/site-packages/aiohttp/client.py", line 1425, in __aenter__ self._resp: _RetType = await self._coro File "/usr/local/lib/python3.10/site-packages/aiohttp/client.py", line 703, in _request conn = await self._connector.connect( File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 548, in connect proto = await self._create_connection(req, traces, timeout) File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1056, in _create_connection _, proto = await self._create_direct_connection(req, traces, timeout) File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1400, in _create_direct_connection raise last_exc File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1369, in _create_direct_connection transp, proto = await self._wrap_create_connection( File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1130, in _wrap_create_connection raise client_error(req.connection_key, exc) from exc aiohttp.client_exceptions.ClientConnectorError: Cannot connect to host 10.20.42.105:32781 ssl:default [Connect call failed ('10.20.42.105', 32781)] 复制 ``` ## 完整内容 SystemInfo 硬件 910BC3 mindie 2.0.RC2 config.json { "Version": "1.0.0", "ServerConfig": { "ipAddress": "172.17.0.10", "managementIpAddress": "127.0.0.2", "port": 8000, "managementPort": 1026, "metricsPort": 1027, "allowAllZeroIpListening": false, "maxLinkNum": 1000, "httpsEnabled": false, "fullTextEnabled": false, "tlsCaPath": "security/ca/", "tlsCaFile": [ "ca.pem" ], "tlsCert": "security/certs/server.pem", "tlsPk": "security/keys/server.key.pem", "tlsPkPwd": "security/pass/key_pwd.txt", "tlsCrlPath": "security/certs/", "tlsCrlFiles": [ "server_crl.pem" ], "managementTlsCaFile": [ "management_ca.pem" ], "managementTlsCert": "security/certs/management/server.pem", "managementTlsPk": "security/keys/management/server.key.pem", "managementTlsPkPwd": "security/pass/management/key_pwd.txt", "managementTlsCrlPath": "security/management/certs/", "managementTlsCrlFiles": [ "server_crl.pem" ], "kmcKsfMaster": "tools/pmt/master/ksfa", "kmcKsfStandby": "tools/pmt/standby/ksfb", "inferMode": "standard", "interCommTLSEnabled": true, "interCommPort": 1121, "interCommTlsCaPath": "security/grpc/ca/", "interCommTlsCaFiles": [ "ca.pem" ], "interCommTlsCert": "security/grpc/certs/server.pem", "interCommPk": "security/grpc/keys/server.key.pem", "interCommPkPwd": "security/grpc/pass/key_pwd.txt", "interCommTlsCrlPath": "security/grpc/certs/", "interCommTlsCrlFiles": [ "server_crl.pem" ], "openAiSupport": "vllm", "tokenTimeout": 600, "e2eTimeout": 600, "distDPServerEnabled": false }, "BackendConfig": { "backendName": "mindieservice_llm_engine", "modelInstanceNumber": 1, "npuDeviceIds": [ [ 0, 1, 2, 3 ] ], "tokenizerProcessNumber": 8, "multiNodesInferEnabled": false, "multiNodesInferPort": 1120, "interNodeTLSEnabled": true, "interNodeTlsCaPath": "security/grpc/ca/", "interNodeTlsCaFiles": [ "ca.pem" ], "interNodeTlsCert": "security/grpc/certs/server.pem", "interNodeTlsPk": "security/grpc/keys/server.key.pem", "interNodeTlsPkPwd": "security/grpc/pass/mindie_server_key_pwd.txt", "interNodeTlsCrlPath": "security/grpc/certs/", "interNodeTlsCrlFiles": [ "server_crl.pem" ], "interNodeKmcKsfMaster": "tools/pmt/master/ksfa", "interNodeKmcKsfStandby": "tools/pmt/standby/ksfb", "ModelDeployConfig": { "maxSeqLen": 26000, "maxInputTokenLen": 20000, "truncation": false, "ModelConfig": [ { "modelInstanceType": "Standard", "modelName": "qwen2_5_vl_72B", "modelWeightPath": "/invoker-deploy/Qwen_local_57_b1275e8d/in/Qwen2___5-VL-72B-Instruct", "worldSize": 4, "cpuMemSize": 5, "npuMemSize": -1, "backendType": "atb", "trustRemoteCode": false } ] }, "ScheduleConfig": { "templateType": "Standard", "templateName": "Standard_LLM", "cacheBlockSize": 128, "maxPrefillBatchSize": 50, "maxPrefillTokens": 30000, "prefillTimeMsPerReq": 150, "prefillPolicyType": 0, "decodeTimeMsPerReq": 50, "decodePolicyType": 0, "maxBatchSize": 200, "maxIterTimes": 6000, "maxPreemptCount": 0, "supportSelectBatch": false, "maxQueueDelayMicroseconds": 5000 } } } 复制 测试结果 ============ Serving Benchmark Result ============ Successful requests: 20 Benchmark duration (s): 55.80 Total input tokens: 89051 Total generated tokens: 2741 Request throughput (req/s): 0.36 Output token throughput (tok/s): 49.12 Total Token throughput (tok/s): 1645.07 ---------------Time to First Token---------------- Mean TTFT (ms): 33009.60 Median TTFT (ms): 33009.08 P99 TTFT (ms): 33034.09 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 136.80 Median TPOT (ms): 137.92 P99 TPOT (ms): 138.75 ---------------Inter-token Latency---------------- Mean ITL (ms): 135.52 Median ITL (ms): 138.23 P99 ITL (ms): 145.32 ---------------------Accuracy--------------------- Accuracy Rate (%): 65.00 ================================================== root@5fd5f429c6cb:/home/project# C root@5fd5f429c6cb:/home/project# cd /home/project ; /usr/bin/env /usr/local/bin/python /root/.vscode-server/extensions/ms-python.debugpy-2025.8.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher 60067 -- /home/project/learning_project/benchmarks/benchmark_serving.py --backend openai-chat --model Qwen/Qwen2_5-VL-72B-Instruct --endpoint /v1/chat/completions --dataset-name phonetest --dataset-path /home/project/dataset/phonetest/web_nj_action_0426_grpo.json --num-prompts 30 --served_model_name qwen2_5_vl_72B --save_result --host 10.20.42.105 --tokenizer /home/temp/llm_tokenizer/Qwen/Qwen2_5-VL-72B-Instruct --port 32781 INFO 06-26 08:59:02 [__init__.py:244] Automatically detected platform cuda. Namespace(backend='openai-chat', base_url=None, host='10.20.42.105', port=32781, endpoint='/v1/chat/completions', dataset_name='phonetest', dataset_path='/home/project/dataset/phonetest/web_nj_action_0426_grpo.json', max_concurrency=None, model='Qwen/Qwen2_5-VL-72B-Instruct', tokenizer='/home/temp/llm_tokenizer/Qwen/Qwen2_5-VL-72B-Instruct', use_beam_search=False, num_prompts=30, logprobs=None, request_rate=inf, burstiness=1.0, seed=0, trust_remote_code=False, ascend=False, disable_tqdm=False, profile=False, save_result=True, save_detailed=False, append_result=False, metadata=None, result_dir=None, result_filename=None, ignore_eos=False, percentile_metrics='ttft,tpot,itl,accuracy_rate', metric_percentiles='99', goodput=None, custom_output_len=256, custom_skip_chat_template=False, phonetest_output_len=1024, sonnet_input_len=550, sonnet_output_len=150, sonnet_prefix_len=200, sharegpt_output_len=None, random_input_len=1024, random_output_len=128, random_range_ratio=0.0, random_prefix_len=0, hf_subset=None, hf_split=None, hf_output_len=None, top_p=None, top_k=None, min_p=None, temperature=None, tokenizer_mode='auto', served_model_name='qwen2_5_vl_72B', lora_modules=None) Starting initial single prompt test run... Initial test run completed. Starting main benchmark run... Traffic request rate: inf Burstiness factor: 1.0 (Poisson process) Maximum request concurrency: None 100%|| 30/30 [01:25<00:00, 2.86s/it] ============ Serving Benchmark Result ============ Successful requests: 30 Benchmark duration (s): 85.87 Total input tokens: 133938 Total generated tokens: 4137 Request throughput (req/s): 0.35 Output token throughput (tok/s): 48.18 Total Token throughput (tok/s): 1607.91 ---------------Time to First Token---------------- Mean TTFT (ms): 41686.26 Median TTFT (ms): 33241.36 P99 TTFT (ms): 66323.77 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 199.20 Median TPOT (ms): 206.81 P99 TPOT (ms): 250.82 ---------------Inter-token Latency---------------- Mean ITL (ms): 200.35 Median ITL (ms): 137.54 P99 ITL (ms): 1651.45 ---------------------Accuracy--------------------- Accuracy Rate (%): 66.67 ================================================== ============ Serving Benchmark Result ============ Successful requests: 1 Benchmark duration (s): 62.06 Total input tokens: 4187 Total generated tokens: 102 Request throughput (req/s): 0.02 Output token throughput (tok/s): 1.64 Total Token throughput (tok/s): 69.11 ---------------Time to First Token---------------- Mean TTFT (ms): 34565.55 Median TTFT (ms): 34565.55 P99 TTFT (ms): 34565.55 -----Time per Output Token (excl. 1st token)------ Mean TPOT (ms): 143.41 Median TPOT (ms): 143.41 P99 TPOT (ms): 143.41 ---------------Inter-token Latency---------------- Mean ITL (ms): 142.01 Median ITL (ms): 131.28 P99 ITL (ms): 163.19 ---------------------Accuracy--------------------- Accuracy Rate (%): 100.00 ================================================== 复制 再次发送请求服务挂死 Traceback (most recent call last): File "/home/project/learning_project/benchmarks/benchmark_serving.py", line 1311, in <module> main(args) File "/home/project/learning_project/benchmarks/benchmark_serving.py", line 840, in main benchmark_result = asyncio.run( File "/usr/local/lib/python3.10/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/usr/local/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete return future.result() File "/home/project/learning_project/benchmarks/benchmark_serving.py", line 329, in benchmark raise ValueError( ValueError: Initial test run failed - Please make sure benchmark arguments are correctly specified. Error: Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1115, in _wrap_create_connection sock = await aiohappyeyeballs.start_connection( File "/usr/local/lib/python3.10/site-packages/aiohappyeyeballs/impl.py", line 122, in start_connection raise first_exception File "/usr/local/lib/python3.10/site-packages/aiohappyeyeballs/impl.py", line 73, in start_connection sock = await _connect_sock( File "/usr/local/lib/python3.10/site-packages/aiohappyeyeballs/impl.py", line 208, in _connect_sock await loop.sock_connect(sock, address) File "/usr/local/lib/python3.10/asyncio/selector_events.py", line 501, in sock_connect return await fut File "/usr/local/lib/python3.10/asyncio/selector_events.py", line 541, in _sock_connect_cb raise OSError(err, f'Connect call failed {address}') ConnectionRefusedError: [Errno 111] Connect call failed ('10.20.42.105', 32781) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/project/learning_project/benchmarks/backend_request_func.py", line 406, in async_request_openai_chat_completions async with session.post( File "/usr/local/lib/python3.10/site-packages/aiohttp/client.py", line 1425, in __aenter__ self._resp: _RetType = await self._coro File "/usr/local/lib/python3.10/site-packages/aiohttp/client.py", line 703, in _request conn = await self._connector.connect( File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 548, in connect proto = await self._create_connection(req, traces, timeout) File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1056, in _create_connection _, proto = await self._create_direct_connection(req, traces, timeout) File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1400, in _create_direct_connection raise last_exc File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1369, in _create_direct_connection transp, proto = await self._wrap_create_connection( File "/usr/local/lib/python3.10/site-packages/aiohttp/connector.py", line 1130, in _wrap_create_connection raise client_error(req.connection_key, exc) from exc aiohttp.client_exceptions.ClientConnectorError: Cannot connect to host 10.20.42.105:32781 ssl:default [Connect call failed ('10.20.42.105', 32781)] 复制 日志信息 /root/mindie/log/debug/mindie-server_19285_202506261647866.log [2025-06-26 17:07:08.881+08:00] [19285] [22974] [server] [INFO] [http_server.cpp:65] : [endpoint] Http receive response from 172.17.0.10:8000, status code is 200, body len 0 [2025-06-26 17:07:08.881+08:00] [19285] [22911] [server] [INFO] [llm_infer_model_instance.cpp:463] : [llm_backend] LLM backend enqueue request finished, request id: endpoint_common_118 [2025-06-26 17:07:08.882+08:00] [19285] [22911] [server] [INFO] [http_server.cpp:65] : [endpoint] Http receive response from 172.17.0.10:8000, status code is 200, body len 0 [2025-06-26 17:07:08.884+08:00] [19285] [22894] [server] [INFO] [llm_infer_model_instance.cpp:463] : [llm_backend] LLM backend enqueue request finished, request id: endpoint_common_110 [2025-06-26 17:07:08.884+08:00] [19285] [22894] [server] [INFO] [http_server.cpp:65] : [endpoint] Http receive response from 172.17.0.10:8000, status code is 200, body len 0 [2025-06-26 17:07:08.921+08:00] [19285] [22928] [server] [INFO] [llm_infer_model_instance.cpp:463] : [llm_backend] LLM backend enqueue request finished, request id: endpoint_common_111 [2025-06-26 17:07:08.921+08:00] [19285] [22928] [server] [INFO] [http_server.cpp:65] : [endpoint] Http receive response from 172.17.0.10:8000, status code is 200, body len 0 [2025-06-26 17:07:09.001+08:00] [19285] [22947] [server] [INFO] [llm_infer_model_instance.cpp:463] : [llm_backend] LLM backend enqueue request finished, request id: endpoint_common_104 [2025-06-26 17:07:09.001+08:00] [19285] [22947] [server] [INFO] [http_server.cpp:65] : [endpoint] Http receive response from 172.17.0.10:8000, status code is 200, body len 0 [2025-06-26 17:07:56.495+08:00] [19285] [22917] [server] [INFO] [common_wrapper.cpp:455] : [endpoint] ResponseCallback begin to send last response. RequestId is endpoint_common_95 [2025-06-26 17:07:56.516+08:00] [19285] [22551] [server] [ERROR] [base_wrapper.cpp:44] : [MIE04E020414] [endpoint] Failed to get ibis seqs id by output 'IBIS_SEQS_ID' not found in response [2025-06-26 17:07:56.516+08:00] [19285] [22551] [server] [ERROR] [base_wrapper.cpp:312] : [MIE04E020414] [endpoint] Failed to generate result for parse seq id error. [2025-06-26 17:07:56.516+08:00] [19285] [22868] [server] [ERROR] [base_wrapper.cpp:44] : [MIE04E020414] [endpoint] Failed to get ibis seqs id by output 'IBIS_SEQS_ID' not found in response [2025-06-26 17:07:56.516+08:00] [19285] [22868] [server] [ERROR] [base_wrapper.cpp:312] : [MIE04E020414] [endpoint] Failed to generate result for parse seq id error. [2025-06-26 17:07:58.884+08:00] [19285] [22553] [server] [WARN] [llm_daemon.cpp:74] : [MIE04W01011A] [daemon] Received exit signal[17] 复制 /root/mindie/log/debug/mindie-batchscheduler_19492_20250626164427423.log [2025-06-26 17:07:55.931+08:00] [19492] [19516] [batchscheduler] [INFO] [slave_IPC_communicator.cpp:523] : [model_backend] slave receive msg len: 46340 [2025-06-26 17:07:56.071+08:00] [19492] [19516] [batchscheduler] [INFO] [slave_IPC_communicator.cpp:523] : [model_backend] slave receive msg len: 46340 [2025-06-26 17:07:56.212+08:00] [19492] [19516] [batchscheduler] [INFO] [slave_IPC_communicator.cpp:523] : [model_backend] slave receive msg len: 46340 [2025-06-26 17:07:56.354+08:00] [19492] [19516] [batchscheduler] [INFO] [slave_IPC_communicator.cpp:523] : [model_backend] slave receive msg len: 46340 [2025-06-26 17:07:56.026+0800] [19492] [281473516958048] [batchscheduler] [ERROR] [standard_model.py:188] : [Model] >>> global rank-2 Execute type:1, Exception:Get data from share memory error: [Errno 2] No such file or directory: '/psm_236f54d9' Traceback (most recent call last): File "/usr/local/Ascend/atb-models/atb_llm/utils/shm_utils.py", line 249, in get_data_from_shm shm = shared_memory.SharedMemory(name=shm_name) File "/usr/lib64/python3.11/multiprocessing/shared_memory.py", line 104, in __init__ self._fd = _posixshmem.shm_open( FileNotFoundError: [Errno 2] No such file or directory: '/psm_236f54d9' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/lib/python3.11/site-packages/model_wrapper/standard_model.py", line 176, in execute return self._prefill(requests) File "/usr/local/lib/python3.11/site-packages/model_wrapper/standard_model.py", line 403, in _prefill return self.__generate(requests, is_prefill=True, is_mix=False) File "/usr/local/lib/python3.11/site-packages/model_wrapper/standard_model.py", line 555, in __generate generate_output = self.__handle_requests(requests, is_prefill, is_mix) File "/usr/local/lib/python3.11/site-packages/model_wrapper/standard_model.py", line 910, in __handle_requests generate_output = self.generator.generate_token(metadata) File "/usr/local/lib/python3.11/site-packages/mindie_llm/text_generator/generator.py", line 327, in generate_token raise e File "/usr/local/lib/python3.11/site-packages/mindie_llm/text_generator/generator.py", line 308, in generate_token generation_output = self.plugin.generate_token(input_metadata) File "/usr/local/lib/python3.11/site-packages/mindie_llm/utils/decorators/time_decorator.py", line 91, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.11/site-packages/mindie_llm/text_generator/plugins/plugin_manager.py", line 102, in generate_token result = self.generator_backend.forward(model_inputs, q_lens=self.plugin_data_param.q_len, File "/usr/local/lib/python3.11/site-packages/mindie_llm/utils/decorators/time_decorator.py", line 69, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.11/site-packages/mindie_llm/text_generator/adapter/generator_torch.py", line 209, in forward logits = self._forward(model_inputs, **kwargs) File "/usr/local/lib/python3.11/site-packages/mindie_llm/text_generator/adapter/generator_torch.py", line 554, in _forward logits = self.model_wrapper.forward(model_inputs, self.cache_pool.npu_cache, **kwargs) File "/usr/local/lib/python3.11/site-packages/mindie_llm/modeling/model_wrapper/atb/atb_model_wrapper.py", line 166, in forward result = self.forward_tensor( File "/usr/local/lib/python3.11/site-packages/mindie_llm/modeling/model_wrapper/atb/atb_model_wrapper.py", line 206, in forward_tensor result = self.model_runner.forward( File "/usr/local/Ascend/atb-models/atb_llm/runner/model_runner.py", line 297, in forward res = self.model.forward(**kwargs) File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2_vl/flash_causal_qwen2_vl.py", line 118, in forward inputs_embeds, image_grid_thw, video_grid_thw, second_per_grid_ts = self.prepare_prefill_token_service( File "/usr/local/Ascend/atb-models/atb_llm/models/qwen2_vl/flash_causal_qwen2_vl.py", line 169, in prepare_prefill_token_service shared_array = get_data_from_shm(shm_value, shape_value, np.uint8, self.weights.device) File "/usr/local/Ascend/atb-models/atb_llm/utils/shm_utils.py", line 253, in get_data_from_shm raise ValueError(f"Get data from share memory error: {e}") from e ValueError: Get data from share memory error: [Errno 2] No such file or directory: '/psm_236f54d9' [2025-06-26 17:07:56.494+08:00] [19492] [19516] [batchscheduler] [INFO] [slave_IPC_communicator.cpp:523] : [model_backend] slave receive msg len: 49631 [2025-06-26 17:07:56.575+08:00] [19492] [19516] [batchscheduler] [INFO] [slave_IPC_communicator.cpp:523] : [model_backend] slave receive msg len: 47247 [2025-06-26 17:07:58.858+08:00] [19492] [19516] [batchscheduler] [INFO] [slave_IPC_communicator.cpp:523] : [model_backend] slave receive msg len: 46340 复制 --- ## 技术要点总结 基于以上内容,主要技术要点包括: 1. **问题类型**: 错误处理 2. **涉及技术**: HTTPS, SSL, NPU, MindIE, 昇腾, CANN, AI 3. **解决方案**: 请参考完整内容中的解决方案 ## 相关资源 - 昇腾社区: https://www.hiascend.com/ - 昇腾论坛: https://www.hiascend.com/forum/ --- *本文档由AI自动生成,仅供参考。如有疑问,请参考原始帖子。*
yg9538
2025年8月27日 11:12
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
Word文件
PDF文档
PDF文档(打印)
分享
链接
类型
密码
更新密码
有效期